
2.1 Exploring Unity Interface

Summary

Exploring Unity interface – the program allows us to totally rearrange its layout and save it as a default option. The author
recommends rearranging the unity so that Hierarchy tab is on the right of the Scene.

Below are Project and Console tabs. Project keeps all your files, and Console tab contains any error your simulation might
have.

On the top we have Scene view – where we can rearrange things as developers. Game view – is a view that a gamer will
see. The author recommends putting game view below so both of them are run simultaneously.

Under Hierarchy tab, we can adjust Main Camera settings, including sound effects, with transform component we edit the
position of objects, also it can be edited by the tools that are in the top right corner, including scaling and rotation.

Creating new objects can be done with right-clicking in the hierarchy area and choosing the object.

The scene can be saved by pressing ctrl+s. ctrl+d will duplicate it.

Key Points

• The Unity Interface is fully changeable.
• It is a good idea to have game view and scene view run simultaneously.
• Hierarchy tab controls camera settings, and it should be located on the right of the scene.
• Creating new objects can be done in the hierarchy tab.
• CTRL+S saves and CTRL+D duplicates scenes.

2.1.1 The Project Window

In this view, you can access and manage the assets that belong to your project.

The left panel of the browser shows the folder structure of the project as a hierarchical list. When a folder is selected from the
list by clicking, its contents will be shown in the panel to the right. You can click the small triangle to expand or collapse the
folder, displaying any nested folders it contains. Hold down Alt while you click to expand or collapse any nested folders
recursively.

The individual assets are shown in the right hand panel as icons that indicate their type (script, material, sub-folder, etc). The
icons can be resized using the slider at the bottom of the panel; they will be replaced by a hierarchical list view if the slider is
moved to the extreme left. The space to the left of the slider shows the currently selected item, including a full path to the item
if a search is being performed.

Above the project structure list is a Favorites section where you can keep frequently-used items for easy access. You can drag
items from the project structure list to the Favourites and also save search queries there (see Searching below).

Searching

Just above the panel is a “breadcrumb trail” that shows the path to the folder currently being viewed. The separate elements
of the trail can be clicked for easy navigation around the folder hierarchy. When searching, this bar changes to show the area
being searched (the root Assets folder, the selected folder or the Asset Store) along with a count of free and paid assets
available in the store, separated by a slash. There is an option in the General section of Unity’s Preferences window to disable
the display of Asset Store hit counts if they are not required.

In the top right corner, select the dropdown menu to change the view layout, and click on the lock icon to freeze the view.

The browser has a powerful search facility that is especially useful for locating assets in large or unfamiliar projects. The basic
search will filter assets according to the text typed in the search box

Located at the left side of the toolbar, the Create menu lets you add new
assets and sub-folders to the current folder.To its right are a set of tools
to allow you to search the assets in your project.

The Window menu provides the option of switching to a one-column
version of the project view, essentially just the hierarchical structure list
without the icon view. The lock icon next to the menu enables you to
“freeze” the current contents of the view (ie, stop them being changed
by events elsewhere) in a similar manner to the inspector lock.

If you type more than one search term then the search
is narrowed, so if you type coastal scene it will only find
assets with both “coastal” and “scene” in the name (ie,
terms are ANDed together).

Searching the Asset Store

To the right of the search bar are three buttons. The first
allows you to further filter the assets found by the
search according to their type.

Continuing to the right, the next button filters assets
according to their Label (labels can be set for an asset in
the Inspector). Since the number of labels can
potentially be very large, the label menu has its own
mini-search filter box.

Note that the filters work by adding an extra term in the search text. A term beginning with “t:” filters by the specified asset
type, while “l:” filters by label. You can type these terms directly into the search box rather than use the menu if you know
what you are looking for. You can search for more than one type or label at once. Adding several types will expand the search
to include all specified types (ie, types will be ORed together). Adding multiple labels will narrow the search to items that have
any of the specified labels (ie, labels will be ORed together).

If you select an item from the list, its details will be displayed in the inspector along with the option to purchase and/or
download it. Some asset types have previews available in this section so you can, for example, rotate a 3D model before
buying. The inspector also gives the option of viewing the asset in the usual Asset Store window to see additional details.

The Project Browser’s search can also be applied to assets
available from the Unity Asset Store. If you choose Asset Store
from the menu in the breadcrumb bar, all free and paid items
from the store that match your query will be displayed.
Searching by type and label works the same as for a Unity
project. The search query words will be checked against the
asset name first and then the package name, package label
and package description in that order (so an item whose name
contains the search terms will be ranked higher than one with
the same terms in its package description).

The rightmost button saves the search by adding an item to the Favourites section of the asset list.

Shortcuts

Frame selected (ie, show the selected asset in its containing folder)F

Shift focus between first column and second column (Two columns)Tab

Focus search fieldCtrl/Cmd + F

Select all visible items in listCtrl/Cmd + A

Duplicate selected assetsCtrl/Cmd + D

Delete with dialog (Win)Delete

Delete without dialog (Win)Delete + Shift

Delete without dialog (OSX)Delete + Cmd

Begin rename selected (OSX)Enter

Open selected assets (OSX)Cmd + down arrow

Jump to parent folder (OSX, Two columns)Cmd + up arrow

Begin rename selected (Win)F2

Open selected assets (Win)Enter

Jump to parent folder (Win, Two columns)Backspace

Expand selected item (tree views and search results). If the item is already
expanded, this will select its first child item.

Right arrow

Collapse selected item (tree views and search results). If the item is already
collapsed, this will select its parent item.

Left arrow

Expand item when showing assets as previewsAlt + right arrow

Collapse item when showing assets as previewsAlt + left arrow

The following keyboard shortcuts are available when the browser view has focus. Note that some of them only work when the
view is using the two-column layout (you can switch between the one- and two-column layouts using the panel menu in the
very top right corner).

Scenes contain the environments and menus of your game. Think of each unique Scene file as a unique level. In each Scene,
you place your environments, obstacles, and decorations, essentially designing and building your game in pieces.

When you create a new Unity project, your scene view displays a new Scene. This Scene is untitled and unsaved. The Scene
is empty except for a Camera (called Main Camera) and a Light (called Directional Light).

A new empty Scene, with the default 3D objects: a Main Camera and a directional Light.

Saving Scenes

2.1.2 Scenes

To save the Scene you’re currently working on,
choose File > Save Scene from the menu, or press
Ctrl + S (Windows) or Cmd + S (masOS).

Unity saves Scenes as Assets in your project’s
Assets folder. This means they appear in the Project
window, with the rest of your Assets.

To open a Scene in Unity, double-click the Scene Asset in the
Project window. You must open a Scene in Unity to work on it.

If your current Scene contains unsaved changes, Unity asks
you whether you want to save or discard the changes.

It is possible to have multiple Scenes
open for editing at one time. For more
information about this, see
documentation on Multi-Scene editing.

Saved Scene Assets visible in the Project window

Opening Scenes Multi-Scene editing

2.1.3 The Scene View

The Scene view is your interactive view into the world you are creating. You will use the Scene view to select and position
scenery, characters, cameras, lights, and all other types of Game Object. Being able to Select, manipulate and modify objects
in the Scene view are some of the first skills you must learn to begin working in Unity.

The Game View is rendered from the Camera(s) in
your game. It is representative of your final,
published game. You will need to use one or more
Cameras to control what the player actually sees
when they are playing your game. For more
information about Cameras, please view the
Camera Component page.

2.1.4 The Game View

Play Mode

Use the buttons in the Toolbar to control the Editor Play Mode and see how
your published game plays. While in Play Mode, any changes you make are
temporary, and will be reset when you exit Play Mode. The Editor UI darkens
to remind you of this.

Game view Control Bar

FunctionButton

Click this to choose from a list of Cameras if you have multiple Cameras in the Scene.
This is set to Display 1 by default. (You can assign Displays to cameras in the Camera
module, under the Target Display drop-down menu.)

Display

Select different values to test how your game will look on monitors with different
aspect ratios. This is set to Free Aspect by default.Aspect

Check this box if you want to emulate the pixel density of older displays: This reduces
the resolution of the Game view when an aspect ratio is selected. It is always enabled
when the Game view is on a non-Retina display.

Low Resolution Aspect Ratops

Scroll right to zoom in and examine areas of the Game screen in more detail. It also
allows you to zoom out to see the entire screen where the device resolution is higher
than the Game view window size. You can also use the scroll wheel and middle mouse
button to do this while the game is stopped or paused.

Scale slider

Click to enable: Use this to make the Game view maximize (100% of your Editor
Window) for a full-screen preview when you enter Play Mode.

Maximize on Play

Click to enable: Use this to mute any in-game audio when you enter Play Mode.Mute Audio

Click this to toggle the Statistics overlay, which contains Rendering Statistics about
your game’s audio and graphics. This is very useful for monitoring the performance of
your game while in Play Mode.

Stats

Click this to toggle the visibility of Gizmos. To only see certain types of Gizmo during
Play Mode, click the dropdown arrow next to the word Gizmos and only check the
boxes of the Gizmo types you want to see. (See Gizmos Options below.)

Gizmos

Gizmos Menu

The Gizmos Menu contains lots of options for how objects, icons, and gizmos are displayed. This menu is available in both the
Scene View and the Game view. See documentation on the Gizmos Menu for more information.

Right-click the Game tab to display advanced
Game View options.

Advanced options

Warn if No Cameras Rendering: This option is enabled by default: It causes a
warning to be displayed if no Cameras are to the screen. This is useful for
diagnosing problems such as accidentally deleting or disabling a Camera. Leave
this enabled unless you are intentionally not using Cameras to render your game.

Clear Every Frame in Edit Mode: This option is enabled by default: It causes the
Game view to be cleared every frame when your game is not playing. This prevents
smearing effects while you are configuring your game. Leave this enabled unless
you are depending on the previous frame’s contents when not in Play Mode.

2.1.5 The Hierarchy Window

The default Hierarchy window view when you
open a new Unity project

Parenting

Unity uses a concept called Parenting. When you create a group of objects, the topmost object or Scene is called the “parent
object”, and all objects grouped underneath it are called “child objects” or “children”. You can also created nested parent-child
objects (called “descendants” of the top-level parent object).

In this image, Child and Child 2 are the child objects of Parent. Child 3
is a child object of Child 2, and a descendant object of Parent.

Click a parent object’s drop-down arrow (on the left-hand side of its
name) to show or hide its children. Hold down the Alt key while
clicking the drop-down arrow to toggle visibility of all descendant
objects of the parent, in addition to the immediate child object.

The Hierarchy window contains a list of every GameObject (referred to
in this guide as an “object”) in the current Scene. Some of these are
direct instances of Asset files (like 3D models), and others are
instances of Prefabs, which are custom objects that make up most of
your game. As objects are added and removed in the Scene, they will
appear and disappear from the Hierarchy as well.

By default, objects are listed in the Hierarchy window in the order they
are made. You can re-order the objects by dragging them up or down,
or by making them “child” or “parent” objects (see below).

Making a child object

To make any object the “child” of another, drag and drop
the intended child object onto the intended parent object
in the Hierarchy.

In this image, Object 4 (selected) is being dragged onto
the intended parent object, Object 1 (highlighted in a blue
capsule).

You can also drag-and-drop an object alongside other objects to
make them “siblings” - that is, child objects under the same
parent object. Drag the object above or below an existing object
until a horizontal blue line appears, and drop it there to place it
alongside the existing object.

In this image, Object 4 (selected) is being dragged between
Object 2 and Object 3 (indicated by the blue horizontal line), to
be placed here as a sibling of these two objects under the
parent object Object 1 (highlighted in a blue capsule).

Child objects inherit the movement and rotation of the parent object. To learn more about this, see documentation on the
Transform component.

Alphanumeric sorting

Toggling Scene Visibility

The order of objects in the Hierarchy window can be
changed to alphanumeric order. In the menu bar,
select Edit > Preferences in Windows or Unity >
Preferences in OS X to launch the Preferenceswindow.
Check Enable Alpha Numeric Sorting.

When you check this, an icon appears in the top-right
of the Hierarchy window, allowing you to toggle
between Transform sorting (the default value) or
Alphabetic sorting.

The Scene visibility controls in the Hierarchy window
allow you to quickly hide and show GameObjects in
the Scene view without changing their in-game
visibility. This is useful for working with large or
complex Scenes where it can be difficult to view and
select specific GameObjects.

For more information, see the documentation on
Scene Visibility.

It is possible to have more than one Scene open in the
Hierarchy window at the same time. To find out more
about this, see the Multi-Scene Editing page.

Scene visibility icons/toggles

Multi-Scene editing

2.1.6 The Inspector Window

Projects in the Unity Editor are made up of multiple GameObjects that contain scripts, sounds, Meshes, and other graphical
elements such as Lights. The Inspector window (sometimes referred to as “the Inspector”) displays detailed information
about the currently selected GameObject, including all attached components and their properties, and allows you to modify
the functionality of GameObjects in your Scene.

The Inspector in its default position in Unity

Inspecting GameObjects

Inspecting script variables

Use the Inspector to view and edit the properties and
settings of almost everything in the Unity Editor,
including physical game items such as GameObjects,
Assets, and Materials, as well as in-Editor settings and
preferences.

When you select a GameObject in either the Hierarchy or
Scene view, the Inspector shows the properties of all
components and Materials of that GameObject. Use the
Inspector to edit the settings of these components and
Materials.

The image above shows the Inspector with the Main
Camera GameObject selected. In addition to the
GameObject’s Position, Rotation, and Scale values, all
the properties of the Main Camera are available to edit.

When GameObjects have custom script components
attached, the Inspector displays the public variables of
that script. You can edit these variables as settings in the
same way you can edit the settings of the Editor’s
built-in components. This means that you can set
parameters and default values in your scripts easily
without modifying the code.

The Inspector window displaying settings for a
typical GameObject and its components

The Inspector window displaying settings for a
GameObject with several custom scripts

attached. The scripts’ public properties are
available to edit

Inspecting Assets

When an Asset is selected in your Project window,
the Inspector shows you the settings related to
how that Asset is imported and used at run time
(when your game is running either in the Editor or
your published build).

The Inspector window displaying the settings
for a Material Asset

Each type of Asset has a different selection of
settings. The images below demonstrate some
examples of the Inspector displaying the import
settings for other Asset types:

The Model tab of the Model Import Settings window:

The Audio Clip Import Settings window:

The Inspector window displaying the import
settings for an .fbx file containing 3D Models

The Inspector window displaying the import
settings for an Audio file

The Inspector window displaying the Import
Settings for a Texture

The Texture Import Setting window:

Prefabs

If you have a Prefab selected, some additional
options are available in the Inspector window.

For more information, see documentation on
Prefabs.

You can assign custom icons to GameObjects and
scripts. These display in the Scene view along with
built-in icons for GameObjects such as Lights and
Cameras.

For more about icons and labels, see Unity
documentation on assigning icons.

Re-ordering components

You can only reorder components on a GameObject.
You can’t move components between different
GameObjects.

You can also drag and drop script Assets directly
into the position you want them to appear.

When you select multiple GameObjects, the
Inspector displays all of the components that the
selected GameObjects have in common. To reorder
all of these common components at once,
multi-select the GameObjects, then drag-anddrop
the components into a new position in the
Inspector.

The order you give to components in the Inspector
window is the order you need to use when querying
components in your user scripts. If you query the
components programmatically, you’ll get the order
you see in the Inspector.

To reorder components in the Inspector window,
drag-and-drop their headers from one position to
another. When you drag a component header, a
blue insertion marker appears. This shows you
where the component should go when you drop the
header:

Project settings

Icons and labels

When you select any of the Project Settings
categories (menu: Editor > Project Settings), these
settings are displayed in the Inspector window. For
more information, see documentation on Project
Settings.

The Inspector window displaying the Tags &
Layers Project Settings panel

Dragging and dropping components on a
GameObject in the Inspector window

2.1.7 The Toolbar

The Toolbar consists of seven basic controls. Each relate to different parts of the Editor.

Transform Tools – used with the Scene View

Transform Gizmo Toggles – affect the Scene View display

Play/Pause/Step Buttons – used with the Game View

Cloud Button - opens the Unity Services Window.

Account Drop-down - used to access your Unity Account

Layers Drop-down – controls which objects are displayed in Scene View

Layout Drop-down – controls arrangement of all Views

2.2

Summary

In the section a script creation process is explained.

At first adding script folder to Project assets must happen - Right click in the folder and add a new C# Script. We can create
script in assets and add it to the scene. When we double-click this script it will open our IDE, for example visual studio
where we can write and edit scripts.

Breaking down the script:

After the name of the script there is a Monobehavior class – a script means you can drag it along with the project.

After the Start, we can make the object move, we can type transform.localScale for example, and it will act accordingly. We
can save the script and go back to unity, we can see that when we play the scene our object moves.

We can use Update() function, if we type transform.localscale * =1.01f giving it a float value.

The Start() function will only happen once after we click play, Update() punction will happen continuously.

We can add conditional fuctions IF(), so other fuctions run if the conditions are met.

Key Points

• Script folder must be added to project assets (C# script)
• Double clicking C# script opens visual studio.
• Monobehavior class (default class) means a script will be dragged along.
• Update() function happens continuously after playing the scene
• Start() functions play once
• IF() functions can be used to add conditions.

2.2.1 Scripting

Scripting is an essential ingredient in all games. Even the simplest game needs scripts, to respond to input from the player
and arrange for events in the gameplay to happen when they should. Beyond that, scripts can be used to create graphical
effects, control the physical behaviour of objects or even implement a custom AI system for characters in the game.

Scripting is a skill that takes some time and effort to learn. The intention of this section is not to teach you how to write script
code from scratch, but rather to explain the main concepts that apply to scripting in Unity.

See the Knowledge Base Editor section for troubleshooting, tips and tricks.

The behavior of GameObjects is controlled by the Components that are attached to them. Although Unity’s built-in
Components can be very versatile, you will soon find you need to go beyond what they can provide to implement your own
gameplay features. Unity allows you to create your own Components using scripts. These allow you to trigger game events,
modify Component properties over time and respond to user input in any way you like.

Unity supports the C# programming language natively. C# (pronounced C-sharp) is an industry-standard language similar to
Java or C++.

In addition to this, many other .NET languages can be used with Unity if they can compile a compatible DLL - see here for
further details.

Learning the art of programming and the use of these particular languages is beyond the scope of this introduction. However,
there are many books, tutorials and other resources for learning how to program with Unity. See the Learning section of our
website for further details.

Creating Scripts

Unlike most other assets, scripts are usually created within Unity directly. You can
create a new script from the Create menu at the top left of the Project panel or by
selecting Assets > Create > C# Script from the main menu.

The new script will be created in whichever folder you have selected in the Project
panel. The new script file’s name will be selected, prompting you to enter a new
name.

It is a good idea to enter the name of the new script at this point rather than editing
it later. The name that you enter will be used to create the initial text inside the file,
as described below

2.2.2 Creating and Using Scripts

When you double-click a script Asset in Unity, it will be opened in a text editor. By default, Unity will use Visual Studio, but you
can select any editor you like from the External Tools panel in Unity’s preferences (go to Unity > Preferences). The initial
contents of the file will look something like this:

A script makes its connection with the internal workings of Unity by implementing a class which derives from the built-in
class called MonoBehaviour. You can think of a class as a kind of blueprint for creating a new Component type that can be
attached to GameObjects. Each time you attach a script component to a GameObject, it creates a new instance of the object
defined by the blueprint. The name of the class is taken from the name you supplied when the file was created. The class
name and file name must be the same to enable the script component to be attached to a GameObject.

The main things to note, however, are the two functions defined inside the class. The Update function is the place to put code
that will handle the frame update for the GameObject. This might include movement, triggering actions and responding to
user input, basically anything that needs to be handled over time during gameplay. To enable the Update function to do its
work, it is often useful to be able to set up variables, read preferences and make connections with other GameObjects before
any game action takes place. The Start function will be called by Unity before gameplay begins (ie, before the Update function
is called for the first time) and is an ideal place to do any initialization.

Note to experienced programmers: you may be surprised that initialization of an object is not done using a constructor
function. This is because the construction of objects is handled by the editor and does not take place at the start of gameplay
as you might expect. If you attempt to define a constructor for a script component, it will interfere with the normal operation
of Unity and can cause major problems with the project.

Anatomy of a Script file

Controlling a GameObject

As noted above, a script only defines a blueprint for a Component and so none of its code will be activated until an instance of
the script is attached to a GameObject. You can attach a script by dragging the script asset to a GameObject in the hierarchy
panel or to the inspector of the GameObject that is currently selected. There is also a Scripts submenu on the Component
menu which will contain all the scripts available in the project, including those you have created yourself.The script instance
looks much like any other Component in the Inspector:

Once attached, the script will start working when you press Play and run the game. You can check this by adding the following
code in the Start function:-

Debug.Log is a simple command that just prints a message to Unity’s console output. If you press Play now, you should see
the message at the bottom of the main Unity editor window and in the Console window (menu: Window > General > Console).

2.2.3 Variables and the Inspector

When creating a script, you are essentially creating your own new type of component that can be attached to Game Objects
just like any other component.

Just like other Components often have properties that are editable in the inspector, you can allow values in your script to be
edited from the Inspector too.

This code creates an editable field in the Inspector labelled “My Name”.

In C#, you must declare a variable as public to see it in the Inspector.

Unity will actually let you change the value of a script’s variables while the game is running. This is very useful for seeing the
effects of changes directly without having to stop and restart. When gameplay ends, the values of the variables will be reset
to whatever they were before you pressed Play. This ensures that you are free to tweak your object’s settings without fear of
doing any permanent damage.

Unity creates the Inspector label by introducing a space wherever a capital letter occurs in the variable name. However, this
is purely for display purposes and you should always use the variable name within your code. If you edit the name and then
press Play, you will see that the message includes the text you entered.

2.2.4 C# Job System Overview

How the C# Job System works

The Unity C# Job System allows users to write multithreaded codethat interacts well with the rest of Unity and makes it easier
to write correct code.

Writing multithreaded code can provide high-performance benefits. These include significant gains in frame rate. Using the
Burst compiler with C# jobs gives you improved code generationquality, which also results in substantial reduction of battery
consumption on mobile devices.

An essential aspect of the C# Job System is that it integrates with what Unity uses internally (Unity’s native job system).
User-written code and Unity share worker threads. This cooperation avoids creating more threads than CPU cores, which
would cause contention for CPU resources.

For more information, watch the talk Unity at GDC - Job System & Entity Component System.

